首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   530篇
  免费   26篇
  国内免费   12篇
测绘学   34篇
大气科学   34篇
地球物理   129篇
地质学   289篇
海洋学   19篇
天文学   37篇
综合类   4篇
自然地理   22篇
  2023年   3篇
  2022年   12篇
  2021年   25篇
  2020年   26篇
  2019年   24篇
  2018年   52篇
  2017年   42篇
  2016年   71篇
  2015年   33篇
  2014年   49篇
  2013年   60篇
  2012年   42篇
  2011年   41篇
  2010年   26篇
  2009年   20篇
  2008年   9篇
  2007年   6篇
  2006年   6篇
  2005年   2篇
  2004年   4篇
  2003年   2篇
  2001年   1篇
  2000年   1篇
  1998年   3篇
  1997年   4篇
  1991年   1篇
  1975年   3篇
排序方式: 共有568条查询结果,搜索用时 49 毫秒
91.
The Airekan and Cheshmeh Shotori areas are located about 60 km northeast of Khour, in Isfahan province from Central Iran. Research on characteristics and rare earth elements (REE) pattern in hydrogeochemical environments of these areas suggests the same origin for the elements dissolved in groundwater in these areas. Investigation of migration pattern of REE in hydrogeochemical environments shows that the migration and transportation of REE has occurred through chloride complexes. REEs, leached by water/rock interaction from the Airekan granite, are transported by groundwater and then precipitated in the Cheshmeh Shotori area. Study of the Cheshmeh Shotori sediments shows the presence of a sequence of red oxidized and dark layers. Geochemical characteristics of these sediments reveal that their REE characteristics are mainly inherited from the Airekan granite. Changes in the REE pattern of these sediments with depth show that changes in oxidation and reduction process have not played a significant role in controlling their behavior. It is crucial to note that adsorption of REEs dissolved in water by hydrosilicate increases these elements in depth. The REE behavior shows water/rock interaction between the granitic rocks and groundwater as the main factor of solution, migration and precipitation of REEs in the Cheshmeh Shotori area.  相似文献   
92.
Core sediments from three disturbed boreholes (JOR, GHAT, and RAJ) and two undisturbed boreholes (DW1 and DW2) were collected in the study area of the Chapai-Nawabganj district of northwestern Bangladesh for geochemical analyses. In the study area, groundwater samples from fourteen As-contained private wells and five nested piezometers at both the DW1 and DW2 boreholes were also collected and analyzed. The groundwater arsenic concentrations in the uppermost aquifer (10–40 m of depth) range from 3 to 315 μg/L (mean 47.73 ± 73.41 μg/L), while the arsenic content in sediments range from 2 to 14 mg/kg (mean 4.36 ± 3.34 mg/kg). An environmental scanning electron microscope (ESEM) with an energy dispersive X-ray spectrometer was used to investigate the presence of major and trace elements in the sediments. Groundwaters in the study area are generally the Ca–HCO3 type with high concentrations of As, but low levels of Fe, Mn, NO3 ? and SO 4 ?2 . The concentrations of As, Fe, Mn decrease with depth in the groundwater, showing vertical geochemical variations in the study area. Statistical analysis clearly shows that As is closely associated with Fe and Mn in the sediments of the JOR core (r = 0.87, p < 0.05 for Fe and r = 0.78, p < 0.05 for Mn) and GHAT core (r = 0.95, p < 0.05 for Fe and r = 0.93, p < 0.05 for Mn), while As is not correlated with Fe and Mn in groundwater. The comparatively low Fe and Mn concentrations in some groundwater and the ESEM image revealed that siderite precipitated as a secondary mineral on the surface of the sediment particles. The correlations along with results of sequential extraction experiments indicated that reductive dissolution of FeOOH and MnOOH represents a mechanism for releasing arsenic into the groundwater.  相似文献   
93.
Simple formulas are derived for the dynamic stiffness of pile group foundations subjected to horizontal and rocking dynamic loads. The formulations are based on the construction of a general model of impedance matrices as the condensation of matrices of mass, damping, and stiffness, and on the identification of the values of these matrices on an extensive database of numerical experiments computed using coupled finite element–boundary element models. The formulations obtained can be readily used for the design of both floating piles on homogeneous half‐space and end‐bearing piles and are applicable for a wide range of mechanical and geometrical parameters of the soil and piles, in particular for large pile groups. For the seismic design of a building, the use of the simple formulas rather than a full computational model is shown to induce little error on the evaluation of the response spectra and time histories. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
94.
The evaluation of seismic risk of spatially distributed systems requires the spatial correlation model for ground motion intensity measures. This study investigates the spatial correlation of four earthquakes recorded in northern Iran. The intra-event spatial correlation for both horizontal and vertical components of spectral acceleration at eight periods in the range of 0.0–3.0 s is estimated using geostatistical tools. An exponential form is chosen to fit experimental semivariograms, and the correlation ranges of spectral accelerations as a function of period are derived. The results show similar trend of correlation ranges for both components. It should be mentioned that the ranges for the vertical component, in general, are higher than those observed for the horizontal one. For both components, the correlation ranges as a function of period are divided into three segments. The first and the third one are increasing while the second one is decreasing with increasing period.  相似文献   
95.
Eikonal solvers often have stability problems if the velocity model is mildly heterogeneous. We derive a stable and compact form of the eikonal equation for P‐wave propagation in vertical transverse isotropic media. The obtained formulation is more compact than other formulations and therefore computationally attractive. We implemented ray shooting for this new equation through a Hamiltonian formalism. Ray tracing based on this new equation is tested on both simple as well as more realistic mildly heterogeneous velocity models. We show through examples that the new equation gives travel times that coincide with the travel time picks from wave equation modelling for anisotropic wave propagation.  相似文献   
96.
The saltation regime is very important for understanding the sediment transport mechanism. However,there is no consensus on a model for the saltation regime. This study answers several questions raised with respect to the Eulerian-Lagrangian modeling of sediment transport. The first question is why the previous saltation models that use different combinations of hydrodynamic forces yielded acceptable results? The second question is which shear lift model(i.e. a shear lift expression and its coefficient) is more appropriate? Another important question is which hydrodynamic forces have greater contributions to the saltation characteristics of a sediment particle? The last question is what are the contributions of the turbulence fluctuations as well as effects of using two-and three-dimensional(2 D and 3 D) models on the simulation results? In order to fairly answer these questions, a systematic study was done by considering different scenarios. The current study is the first attempt to clearly discuss these issues. A comprehensive 3 D saltation model for non-cohesive sediment was developed that includes all the hydrodynamic forces acting on the particle. The random nature of sediment transport was included using turbulent flow and bed-particle collision models. The eddy interaction model was applied to generate a3 D turbulent flow field. Bed-particle collisions were considered using the concept of a contact zone and a corresponding contact point. The validation of the model was done using the available experimental data for a wide range of sediment size(0.03 to 4.8 cm). For the first question, the results indicated that some of the hydrodynamic effects show opposing trends and some have negligible effects. With these opposing effects it is possible to adjust the coefficients of different models to achieve acceptable agreement with the same experimental data while omitting some aspects of the physics of the process. A suitable model for the shear lift force was developed by linking the lift coefficient to the drag coefficient and the contributions of the hydrodynamic forces and turbulence fluctuations as well as the consequences of using of 2 D and 3 D models were studied. The results indicate that the shear lift force and turbulent flow fluctuations are important factors for the saltation of both sand and gravel, and they cannot be ignored.  相似文献   
97.
The goal of this study is to investigate the uncertainty of an urban sewer system’s response under various rainfall and infrastructure scenarios by applying a recently developed nonparametric copula-based simulation approach to extreme rainfall fields. The approach allows for Monte Carlo simulation of multiple variables with differing marginal distributions and arbitrary dependence structure. The independent and identically distributed daily extreme rainfall events of the corresponding urban area, extracted from nationwide high resolution radar data stage IV, are the inputs of the spatial simulator. The simulated extreme rainfall fields were used to calculate excess runoff using the Natural Resources Conservation Service’s approach. New York City is selected as a case study and the results highlight the importance of preserving the spatial dependence of rainfall fields between the grids, even for simplified hydrologic models. This study estimates the probability of combined sewer overflows under extreme rainfall events and identifies the most effective locations in New York City to install green infrastructure for detaining excess stormwater runoff. The results of this study are beneficial for planners working on stormwater management and the approach is broadly applicable because it does not rely on extensive sewer system information.  相似文献   
98.
Water Resources - The present study aimed to locate the areas prone to flood spreading in order to manage surface water resources. Therefore, the information layers of slope, land capability,...  相似文献   
99.
Self-centering rocking walls offer the possibility of minimizing repair costs and downtimes, and also nullify the residual drift after seismic events, thanks to their self-centering properties. In this paper, the effect of axial stress ratio on the behavior of monolithic self-centering rocking walls is investigated by utilizing a developed finite element model. To verify the validity of the finite element model, results and observed damage in the model are compared with those of a full-scale wall test. The axial stress ratio is varied from 0.024 to 0.30 while keeping the other structural parameters constant. For qualitative damage evaluation, the observed damage in the model compared with expected damage states of desired performance levels. In order to evaluate the incurred damage quantitatively, the amount of crushing and damage in the wall is calculated by utilizing several ratios (crushing ratio and damage ratio). Furthermore, seismic response factors (i.e., μ, R and Cd) are calculated for different axial stress ratio values. The obtained results showed that, in order to satisfy the requirements of desired performance levels, the maximum axial stress ratio should be approximately within the range of 0.10–0.15. In addition, the maximum overall damage ratio and crushing ratio are suggested to be less than 5%. For axial stress ratio higher than 0.15, the flag-shaped pattern of hysteresis curves completely disappeared and the variation of displacement ductility is less sensitive to axial stress ratio. Considering the maximum axial stress ratio limited to 0.150, values of 4 and 3.5 are conservatively proposed as a period-independent response modification factor and displacement modification factor of the investigated structural wall, respectively.  相似文献   
100.
In this research the tail equivalent linearization method(TELM) has been extended to study structures with degrading materials. The responses of such structures to excitations are non-stationary, even if the excitations are stationary. Non-stationary behavior of the system cannot be considered by conventional TELM. Applying the conventional TELM, the only distinction in the design point excitation for two stationary excitations with different durations is in the addition of a zero value part at the beginning of the design point of the longer excitation. This means that the failure probability is the same for the non-stationary systems under excitations with different durations. Therefore, this solution cannot be correct. In this study, in using TELM for systems with degrading materials, hysteretic energy is replaced by average hysteretic energy, calculated by averaging the obtained hysteretic energy of the structure subjected to a few random sample load realization. In this way, the degradation parameters under design point coincide with those under sample load realizations. Since the average of the hysteretic energy is converges very fast, the modified TELM only requires about tens to hundreds solutions of the response in addition to the ordinary calculations of conventional TELM.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号